Part Number Hot Search : 
WM8714ED 3MN03S MB2541 1048269 HCT14 58200 3HG2128M 10F60S3
Product Description
Full Text Search
 

To Download DTV Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
DTVseries
(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODE
MAIN PRODUCTS CHARACTERISTICS IF(AV) VRRM VF 5 A to 10 A 1500 V 1.3 V to 1.5 V
A
A K
K
FEATURES AND BENEFITS HIGH BREAKDOWN VOLTAGE CAPABILITY VERY FAST RECOVERY DIODE SPECIFIED TURN ON SWITCHING CHARACTERISTICS LOW STATIC AND PEAK FORWARD VOLTAGE DROP FOR LOW DISSIPATION SUITED TO 32-110kHz MONITORS AND 16kHz TV DEFLECTION INSULATED VERSION (ISOWATT220AC): Insulating voltage = 2000V DC Capacitance = 12pF PLANAR TECHNOLOGY ALLOWING HIGH QUALITY AND BEST ELECTRICAL CHARACTERISTICS ABSOLUTE RATINGS Symbol VRRM IF(RMS) IFSM RMS forward current Surge non repetitive forward current tp = 10ms half sine wave DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 Tstg Tj Storage temperature range Maximum operating junction temperature Parameter Repetitive peak reverse voltage Value 1500 15 50 75 80 80 80 80 -65 to 150 150 C C
1/10
TO-220AC DTVxxxD
ISOWATT220AC DTVxxxF
DESCRIPTION High voltage diode with high current capability dedicated to horizontal deflection. DTV16 is optimized to TV meanwhile DTV32 to DTV110 are covering the full range of monitors from the low end to the professional hi-definition SXGA CAD display units. These devices are packaged either in TO220-AC or in ISOWATT220AC.
Unit V A A
August 1999 - Ed: 2B
DTVseries
THERMAL RESISTANCES Symbol Rth(j-c) Parameter Junction to case thermal resistance DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 Value
TO-220AC ISOWATT220AC
Unit C/W
3 2.5 2 1.8 1.6 1.3
5.5 4.75 4 4 3.7 3.5
STATIC ELECTRICAL CHARACTERISTICS Value Symbol VF
*
Test Conditions IF = 5 A IF = 6 A IF = 6 A IF = 6 A IF = 6 A IF = 10 A DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 DTV16 DTV32 DTV56 DTV64 DTV82 DTV110
Tj = 25C Typ Max 1.6 1.5 1.8 1.7 1.8 2.3 60 100 100 100 100 100
Tj = 125C Typ 1.0 1.1 1.1 1.1 1.0 1.15 100 100 100 100 100 100 Max 1.5 1.35 1.5 1.4 1.3 1.5 500 1000 1000 1000 1000 1000
Unit V
IR
**
VR = VRRM
A
pulse test : * tp = 380 s, < 2% ** tp = 5 ms, < 2%
2/10
DTVseries
RECOVERY CHARACTERISTICS Symbol trr IF = 100m A IR = 100mA IRR = 10mA Test Conditions Tj = 25C DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 trr IF = 1 A dIF/dt =-50A/s VR =30V Tj = 25C DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 Typ 1500 850 750 750 675 625 200 130 110 110 105 95 300 175 135 135 125 115 ns Max Unit ns
TURN-ON SWITCHING CHARACTERISTICS Symbol tfr IF = 6 A dIF/dt = 80 A/s VFR =3V Test Conditions Tj = 100C DTV16 DTV32 DTV56 DTV64 DTV82 DTV110 VFP IF = 6A dIF/dt = 80 A/s Tj = 100C DTV16 DTV32 DTV56 DTV64 DTV82 DTV110
To evaluate the maximum conduction losses use the following equation : DTV16 P= 1.14 x IF(AV) + 0.072 x IF2(RMS) DTV32 P= 1.069 x IF(AV) + 0.047 x IF2(RMS) DTV56 P= 1.15 x IF(AV) + 0.059 x IF2(RMS) DTV64 P= 1.06 x IF(AV) + 0.053 x IF2(RMS) DTV82 P= 1.01 x IF(AV) + 0.048 x IF2(RMS) DTV110 P= 1.12 x IF(AV) + 0.038 x IF2(RMS)
Typ 350 570 350 350 270 250 25 21 19 18 14 11
Max
Unit ns
34 28 26 22 18 14
V
3/10
DTVseries
Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, =0.45).
PF(av)(W) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 Ip(A) 6 8 10
DTV16 DTV110
Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, =0.45).
2.0 PF(av)(W)
1.5
DTV32
1.0
DTV56
0.5
Ip(A)
0.0
0
1
2
3
4
5
6
Fig. 1-3: Power dissipation versus peak forward current (triangular waveform, =0.45).
PF(av)(W) 2.0
1.5
DTV82
1.0
DTV64
0.5
Ip(A)
0.0
0
1
2
3
4
5
6
Fig. 2-1: Average current versus case temperature (=0.5) (TO-220AC).
12 10
DTV64
Fig. 2-2: Average current versus case temperature (=0.5) (ISOWATT220AC).
IF(av)(A) 12 10 8 6
IF(av)(A)
DTV110 DTV82
DTV32 DTV56 DTV64
DTV110 DTV82
8 6 4 2
=tp/T
tp
DTV56 DTV32
DTV16
T
4
T
DTV16
2
0
Tcase(C) 50 75 100 125 150
0
25
0
=tp/T
tp
Tcase(C)
50 75 100 125 150
0
25
4/10
DTVseries
Fig. 3-1: Forward voltage drop versus forward current (DTV16D/F).
IFM(A) 20.0 10.0
Typical Tj=125C Maximum Tj=125C Maximum Tj=25C
Maximum Tj=125C Maximum Tj=25C
Fig. 3-2: Forward voltage drop versus forward current (DTV32D/F).
IFM(A) 20.0 10.0
Typical Tj=125C
1.0
1.0
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.1 0.0
VFM(V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Fig. 3-3: Forward voltage drop versus forward current (DTV56D/F).
IFM(A) 20.0 10.0
Typical Tj=125C
Fig. 3-4: Forward voltage drop versus forward current (DTV64D/F).
IFM(A) 20.0 10.0
Maximum Tj=125C Maximum Tj=25C Typical Tj=125C
Maximum Tj=125C
Maximum Tj=25C
1.0
1.0
VFM(V) 0.1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
VFM(A) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fig. 3-5: Forward voltage drop versus forward current (DTV82D/F).
IFM(A) 20.0 10.0
Typical Tj=125C
Fig. 3-6: Forward voltage drop versus forward current (DTV110D/F).
IFM(A) 20.0 10.0
Typical Tj=125C
Maximum Tj=125C
Maximum Tj=25C
Maximum Tj=125C Maximum Tj=25C
1.0
1.0
VFM(V) 0.1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
VFM(V) 0.1 0 0.5 1 1.5 2 2.5 3
5/10
DTVseries
Fig. 4-1: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV16D / DTV32D / DTV56D).
IM(A) 60 55 50 45 40 35 30 25 20 15 IM 10 5 0 1E-3
Fig. 4-2: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV16F / DTV32F / DTV56F).
45
IM(A)
Tc=100C
DTV32F & DTV56F
Tc=100C
DTV32D & DTV56D
40 35 30 25
DTV16F
DTV16D
20 15 10
IM t
t
=0.5
t(s) 1E-2 1E-1 1E+0
5 0 1E-3
=0.5
t(s)
1E-2
1E-1
1E+0
Fig. 4-3: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV64D / DTV82D / DTV110D).
IM(A) 100 90 80 70 60 50 40 30 IM 20 10 0 1E-3
Fig. 4-4: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV64F / DTV82F / DTV110F).
IM(A) 60 55 50 45 40 35 30 25 20 15 IM 10 5 0 1E-3
Tc=100C
DTV110D DTV82D
DTV110F DTV82F
Tc=100C
DTV64D
DTV64F
t
t
=0.5
t(s)
=0.5
t(s)
1E-2
1E-1
1E+0
1E-2
1E-1
1E+0
Fig. 5.1: Reverse recovery charges versus dIF/dt (DTV16D/F).
Qrr(C) 2.4 2.2 IF=Ipconfidence 90% 2.0 Tj=125C 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2
Fig. 5.2: Reverse recovery charges versus dIF/dt.
Qrr(nc) 1200 1000 800 600 400 200 dIF/dt(A/s)
IF=Ip 90% confidence Tj=125C
DTV64 DTV82 DTV32
dIF/dt(A/s)
0.5
1.0
2.0
5.0
0 0.1
0.2
0.5
1
2
5
6/10
DTVseries
Fig. 5.3: Reverse recovery charges versus dIF/dt.
Qrr(nc) 1200 1000 800 600 400 200 dIF/dt(A/s) 0 0.1 0.2 0.5 1 2 5
DTV110
Fig. 6.1: Reverse recovery current versus dIF/dt.
IRM(A) 3.0 2.7 IF=Ip 90% confidence 2.4 Tj=125C 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 0.1 0.2
IF=Ip 90% confidence Tj=125C
DTV56
DTV16
DTV32
dIF/dt(A/s) 0.5 1 2 5
Fig. 6.2: Reverse recovery current versus dIF/dt.
IRM(A) 2.2 2.0 IF=Ip 1.8 90% confidence Tj=125C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2
Fig. 6.3: Reverse recovery current versus dIF/dt.
IRM(A) 2.2 2.0 IF=Ip 90% confidence 1.8 Tj=125C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2
DTV64
DTV110
DTV56
DTV82
dIF/dt(A/s)
dIF/dt(A/s)
0.5
1
2
5
0.5
1
2
5
Fig. 7-1: Transient peak forward voltage versus dIF/dt.
VFP(V) 45 40 35 30 25 20 15 10 5 0 0 20 40 60
IF=Ip 90% confidence Tj=125C
Fig. 7.2: Transient peak forward voltage versus dIF/dt.
VFP(V) 30
DTV16
DTV32 DTV56
25 20 15 10 5
IF=Ip 90% confidence Tj=125C
DTV64
DTV82
DTV110
dIF/dt(A/s)
80 100 120 140
0 0 20 40 60
dIF/dt(A/s)
80
100
120
140
7/10
DTVseries
Fig. 8.1: Forward recovery time versus dIF/dt.
tfr(ns) 800 750 700 650 600 550 500 450 400 0
DTV64
DTV16
DTV32
IF=Ip 90% confidence Tj=125C
Fig. 8-2: Forward recovery time versus dIF/dt.
700 650 600 550 500 450 400 350
tfr(ns)
IF=Ip 90% confidence Tj=125C
DTV56
DTV82
DTV110
dIF/dt(A/s)
20 40 60 80 100 120 140
dIF/dt(A/s)
300
0
20
40
60
80
100
120
140
Fig. 9: Dynamic parameters versus junction temperature.
VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125C] 1.2
Fig. 10: Junction capacitance versus reverse voltage applied (typical values).
C(pF) 200 100
DTV110
DTV82
Tj=25C F=1MHz
1.0 0.8
VFP
0.6
IRM
DTV16
10
DTV32 DTV56
0.4
Qrr
DTV64
0.2
Tj(C)
0.0
0
20
40
60
80
100
120
140
1 1
VR(V) 10 100 200
Fig. 11-1: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC).
K=[Zth(j-c)/Rth(j-c)] 1.0
= 0.5
Fig. 12-2: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC).
K=[Zth(j-c)/Rth(j-c)] 1.0
0.5
= 0.2
0.5
= 0.5
= 0.2
= 0.1
= 0.1
0.2
Single pulse
T
0.2
Single pulse
T
tp(s) 0.1 1E-2 1E-1 1E+0
=tp/T
tp
tp(s)
1E+1
=tp/T
tp
0.1 1E-3
1E-2
1E-1
1E+0
8/10
DTVseries
PACKAGE DATA TO-220AC (plastic) (JEDEC outline) DIMENSIONS REF.
H2 C L5 OI L6 L2 D L7 A
Millimeters Min. Max. 4.60 1.32 2.72 0.70 0.88 1.70 5.15 10.40 14.00 2.95 15.75 6.60 3.93 3.85 4.40 1.23 2.40 0.49 0.61 1.14 4.95 10.00 13.00 2.65 15.25 6.20 3.50 3.75
Inches Min. 0.173 0.048 0.094 0.019 0.024 0.044 0.194 0.393 0.511 0.104 0.600 0.244 0.137 0.147 Max. 0.181 0.051 0.107 0.027 0.034 0.066 0.202 0.409 0.551 0.116 0.620 0.259 0.154 0.151
A C D E F F1 G H2 L2
L9 F1 L4
16.40 typ.
0.645 typ.
F G
M E
L4 L5 L6 L7 L9 M Diam. I
2.6 typ.
0.102 typ.
Cooling method : c. Torque value : 0.55 m.N typ (0.70 m.N max).
9/10
DTVseries
PACKAGE DATA ISOWATT220AC (plastic)
A H B
DIMENSIONS REF. Millimeters Min. Typ. Max. Min. 4.40 2.50 2.40 0.40 0.75 1.15 4.95 10.00 16.00 28.60 15.90 9.00 3.00 30.60 1.125 16.40 0.626 9.30 0.354 3.20 0.118 4.60 0.173 2.70 0.098 2.75 0.094 0.70 0.016 1.00 0.030 1.70 0.045 5.20 0.195 10.40 0.394 0.630 1.205 0.646 0.366 0.126 Inches Typ. Max. 0.181 0.106 0.108 0.028 0.039 0.067 0.205 0.409
Diam
A B D
L7
L6 L2 L3
E F F1 G H L2 L3
F1
F G
D
E
L6 L7 Diam
Cooling method : C. Torque value : 0.55 m.N typ (0.70 m.N max). Ordering code DTV16D DTV32D DTV56D DTV64D DTV82D DTV110D DTV16F DTV32F DTV56F DTV64F DTV82F DTV110F Marking DTV16D DTV32D DTV56D DTV64D DTV82D DTV110D DTV16F DTV32F DTV56F DTV64F DTV82F DTV110F Package TO-220AC
Electrical isolation : 2000V DC Capacitance : 12 pF Weight 1.86g Base qty 50 Delivery mode Tube
ISOWATT220AC
2g
50
Tube
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics (c) 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 10/10


▲Up To Search▲   

 
Price & Availability of DTV

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X